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The exponential-fract ional  functions introduced by Yu. N. Rabot- 
nov [1] as kernels of integral operators have proved to be a highly 
effective tool when the Volterra principle is applied to the solution of 
static [1,2] and dynamic [8,4] problems in hereditary theory of elas- 
ticity. Thereason for their effectiveness is that exponential-fract ional  
kernels permit interpretation of the corresponding elastic operators on 
the basis of well defined rules. By investigating dissipative processes 
during harmonic deformations of such media ,  it is possible to establish 
the equivalence between the exponential-fract ional  kernels and the 
distribution functions of relaxation (retardation) constants [6,6].  As 
an example ,  the order of divisibility uniquely defines the radius of 
the complex-(compl ianee) -vec tor  diagram [7] which constitutes clock 
diagrams of the type reported by Cole and Cole that correspond to a 
certain distribution function for relaxation (retardation) constants. 

The analysis of dissipation processes may be based on the example 
of an acoustic wave which propagates in an unbounded medium and 
whose elastic operators are defined by exponential-fract ional  memory 
functions. 

1. The system of equations of hereditary elasticity theory enables 
one to write the equations of motion in terms of the displacement 

vector u i in the following form: 

p u i ' =  ~.uh,ki + p ( u h , k i + u l , / j ) ,  (1.1)  

where p is the density of the medium.  The dot above the u denotes the 
t ime derivative, while the subscript behind the comma  indicates spatial 
differentiation with respect to the corresponding coordinate.  The elas- 
tic operators are defined as follows: 

= X ( I + A * ) ,  h * s = f A ( 9 ~ ( t - -  S) ~ls , 

0 

M = ~ M ( s ) e ( t - - s ) d s .  (1.2) ,u = IX (1 + M*), 
0 

The solution of (1.1) will be sought in the form of an attenuating 
wave 

u i = A i exp[icot - -  (~z + i~o / c)xavAI,  (1.3) 

where v i denotes a unit vector directed along the path of a wave char-  
acterized by a velocity c > 0, a frequency w > 0, an absorption coef-  
ficient a > 0, and an ampli tude A i, 

By substituting (1.3) into ( i ,1L  we obtain 

- -  p~02A~ = (a  + i~o / c) ~ X 

X {Ahvhv  i ~.[t + A(~o)] + ( A  i + Ahvhvi)Ix[l + M(~0)]}, (1.4) 

(to) = f M (,) e-i'~'~ds. A (o~) = ~ A (s) e -t~ s .  (1.5) M 
o o 

From relation (1.4) it is possible to determine the wave velocity 
c,  the absorption coefficient a ,  and the logarithmic decrement  5 
which defines the attenuation of a wave in space. One must distinguish 
here between two types of wave: transverse and longitudinal waves 

propagating independently at the velocities c t and cl ,  respectively. 

The characteristics of a transverse wave are determined from 

Eq. (1.4) by setting AkV k = 0 in it; we obtain 

Hence, we get 

Oct ~ = Ix~ IX~ = Ix I t + M(to)l, (1."/) 

at  = coct -~ tg 1/2 q~t, 6 = 2n t g l /2~ t ,  (1.8) 

I m [ l  + M(o) l  1 
t g c P t =  t t e [ l + M ( c o ) ]  ' O-.<q~t~<~-~. (1.9) 

where p~ is the absolute value of the complex modulus, which may be 
assumed to define the dynamic modulus; and tg r is the conventional 
mechanical- loss  tangent for the one-dimensional  case. 

For a longitudinal wave, AkV k ;~ 0. Then, multiplying relation 

(1.4) by v i ,  and summing over the recurrent subscripts, we obtain 

- -  P ~ -= (:tl -i- icocl-1)~ {L [ 1 -[- A (~o)] -~- 2~t [1 sic] 

From here, by analogy to the transverse wave, we have 

(1.10) 

pe 2 = N see sx/Bq% (1.11) 

2v = IN* I = i x[t + A(o)l + 2IX[t + M ( ~ ) l l ,  
(1.12) 

a t = r tgl/zq~t, fi = 2ntgl/2q~t, 

tgq~/= IroN* / ReN*, 0 ~< ~z < V : .  (1.13) 

For convenience,  the longitudinal wave characteristics will by 
expressed through elastic hydrostatic stress and shear operators, This 
can be achieved with the aid of the relation 

N* = K[t  + K*(ro)I + ~/3IX[I + M*(o)] .  (1.14) 

On the basis of the Fourier transform theorems 

lim A(r = limM(r = 0, limc0A(t0) = - -  iA(0), 
r162 r o~--.oo 

limo)M(o)) = - -  iM(O) ,  (1.15) 

f r o m  relations (1.7), (1.8), (1.11) for w ~- .% we obtain 

pctcc2 = Ixoo, p c l o 2 = K ~ + 4 / z i x c ~ ,  (1.16) 

alcoctoo = 1/3 M (0), at~clo o = 1/2 [LA (0) + 2IXM (0)1 . (1.17) 

Hence, for oJ ~ ~o, the acoustic wave velocities are equal to the 
corresponding "nonrelaxed" elastic velocities, while the absorption 
coefficients are defined by hereditary kernels taken for t = 0, i . e . ,  
for all weakly singular kernels at w "-*% a t and a l "-* .o. For w -'* 0, 
with allowance for the normalizat ion condition 

we get 

Pcto2 = IXO, 

o o 

(1.18) 

pct~ = K o  + 4/3P0, at~ = otto = 0 (1 .19)  

This means that the acoustic wave velocities become equal to the cor- 
responding =relaxed" elastic velocit ies,  while absorption is discontinued.  

2. Let us first examine a transverse wave for the case in which 

the kernel of the operator Ivl(t) is an exponential-fract ional  function 

- -  po~ ~ = (a  t + ico / ct)ix[l + M(c0)].  (1 .6 )  
M ( t ) = - - •  r [(T(n + t)1 \~-~ / 

n---t, 
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Fig. 1 

x = h ~  / ~to~'%., A ~  = ~co - -  P'o ( 2 . 1 )  

where ~o and P0 are the nonrelaxed and relaxed values of the shear 
modulus, respectively; rp is the relaxation t ime of shear stresses; and 
y is the divisibility parameter .  For )' = 1, the kernel (2.1) degenerates 
to an ordinary exponential function, while the hereditary shear charac-  
teristics are described by a standard linear model.  Substituting (2.1.) 
into (1.5), we obtain for the mechanical- loss  tangent (1.9) and the 
dynamic modulus (1.7). respectively: 

.-vf tg ~pt = AIr sm ~b ap = ~- . ,  (2.2) 
g 

I~o ~ see opt 
g -= (o,~)~ + ~ (o~*~) ~ + (~0 + t%) c o s ,  ~0 = h ' 

t 
h ~ +  ((oVp) v + 2 c o s ~ .  (2.3) 

It can be readily shown that for condition (wrp) zy = V0/V~o, the 
mechanical- loss  tangent has its m a x i m u m  value 

A• sin xb A •  - ~t~~ ~--q- it~ (2.4) tg q~m - -  
2 + h • cos r ]/~o 

This can be clearly seen from Fig. i, where ~ has been chosen 
as the parameter and its values are indicated by numbers on the curves 

/~0/P*o = 0.1. The figure shows that for a standard linear body (y = 1) 
the dynamic modulus gO(to) attains its l imiting values p'(w --~ 0) = P0 
and V'(to--~ oo) = P~o much faster than t g q  t -'~ 0 doesfor w "-" 0 and w --~ 

co. This can be explained by the difference in the asymptotic be-  
havior of these quantities which for y = 1 are illustrated by the follow- 

ing relations [8]: 

P '~  - -  Ix~ tg q)t AV o~<~ >~> l (2.5) 
p.o = p.~ 21tccc~ -~ Itco (o'r-"-~ ' 

/t~ - -  ~to ~ A~t (oz~ <~ i (2.6) ~1,0 ~ ~L 0 A- 2[~0 O)2V~ 2, tg ~Pt = o),8 ~ 0  ' 

This difference vanishes gradually as y decreases, since the nature 
of the asymptotic behavior of the loss tangent and dynamic modulus 
changes 

itO=lxoo - Ap. c o s ,  tgtpt--- ~ Al t s in*  , c o % > > i ,  (2.7) 
O) "t 't'pJ ~oo( ~ ~,~p7 

~io = ~o + h~(co%) v cos*, 

tg~Pt = A~t0-~(o)z~) v s in , ,  c0z~ ~ 1. (2.8) 

If tg ~0 t and #* are known, from formulas (1.7) 
difficult to determine the velocity,  the absorption 
logarithmic decrement  of  the transverse wave, 

and (1.8) it is not 

coefficient and the 
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Fig. 2 

pet ~ = qh-ZseccPtsecZl/zq) t , (2.9) 
1 t . 1 

a t = o)(p / ~o) sm/zq~t, 6 =2:ztg~/~(pt. (2.10) 

Figure 2 shows the curves pc~ = ~(ln wl"p) and 6 = 2C(ln w r y ) .  It is 
obvious that the behavior of the squared velocity differs from that of 
the logarithmic decrement  and the behavior of the dynamic modulus 
differs from that of the loss tangent. This difference vanishes, how- 
ever, with decreasing attenuation, whose magnitude is defined by 
three factors: the frequency range w~'p, the degree of relaxation V0/P~, 
and the parameter  7. The values of y are indicated by numbers at the 
curves. For fixed V0/,.o and 7, the asymptotic behavior of pc[  and 6/Ir 
for w r g  "~ ,~ and w r p  "-~ O is defined, respectively, by expressions 
(2.7) and (2.8). For fixed w~'~ and ~0/~o, the difference between 
tg e t  and 6/~r and between p~ and pc~, vanishes in the case of y --~ 1 
(standard linear body). For given wr~  and ~, the following limiting 
relations are valid: 

lira lg~pt = l i m 6 = 0 ,  ~ P-o/~-~, 

lira tg ~ [ c o s  $ + ((ov~)~] -z sin $ ,  

lim (6 / ~) = {cos r + (co~:l,.)'r + 

+ [l + 2 ((oT~,) v cos ~p + ((oT~) 2v] %}-1 sin ~ , 

lim t~o = ~o [l + 2 ((ova) -v cos ~p + ( ( ~ )  -2v]- 'h , 
~--~o 

lira pets = 2p%~ [l -[- (o)v~) -v cos ~p + (p,~o -z lira Do)-l]-z. (211) 
~ o  ~-,o 

When all the values vary simultaneously, attenuation has its peak 
value for the condition (wry) 2 = P o / P o o .  Hence, the difference 
between tg ~t and 5/~r and between ~ and pc[  is max imum.  Figure 
3 gives a comparison between tg e m t  (curves a) and (6 / l r )m (curves 
b). The numbers indicate the value of parameter  y. W h e n  the ratio 
P0/P .o decreases, the difference between these two quantities increases 
from 0 to tg ~ - 2 tg (~/2) for 0 < y < 1, and tends to infinity in the 

case of a standard linear body (y = 1). 

-g -q -6 -8 

Fig. 3 
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In formulas (2 .2 ) - (2 .4 ) ,  the frequency dependence (variance) of 
the respective quantities is defined by a dimensionless parameter  to r ta, 
which depends not only on the frequency but on the temperature  as 
well, since, according to the Arrhenius law, ru  = r0 exp (u/kt).  

An increase In temperature,  therefore, is equivalent to a de- 
crease in frequency; this fact is used in experimental  dispersion studies. 

This equivalence does not apply to the absorption coefficient cd t = 

= atc t~to -s, since c~ attains a max imum as a function of the t e m -  
perature (Fig. 4), while w varies monotonically (Fig. 5). The influence 
of 7 (whose values are indicated by numbers at the curves) is dif- 
ferent in each case which is a result of the violation of the t empera -  
ture-frequeney equivalence. 

This can be seen particularly clearly from an analysis of the 
asymptotic behavior of the coefficient a t, 

A~ to sin ~0 
, 1 ~ 2 c~o o o~ v "~'~ tort~ >> t (2.12) 

Ap.of ~+~ "r~ "r sin ~p 
a t - -  2ct~ ~ , r162 <~ 1. (2.13) 

For to = eonst, when r/~-->O and ~'p---~ *% the absorption coefficient 
c~ t '  tends to zero (Fig. 4). For rp = const, if to tends to zero c~t tends 
to zero for any Y ~ (0A]. If, however, ~v --- ,% then a~ --* ~ for 

7 ;~ 1, while r = Art / 2ctzoxt~ for 7 = 1 (Fig. 4). 
8. Let us determine the characteristics of a longitudinal wave, 

assuming that the volume relaxation kernel is also described by a 
Rabotnov exponential-fract ional  function. Then, 

AKhK-~ sin ap K q- % Abth~.-~ sin *~ 

tg ~pl -:- g KhK -~ + ~/s g~hr~-~ 
(3. i) 

N = (gK h-~ q- a/3 g h~-~) see (Pl �9 (3.2) 

The subscript K means that the corresponding quantities charac-  
terize volume relaxation, 

The influence of volume relaxation on shear relaxation can be 
assessed from formulas (3 ,1 ) - (3 .3 ) .  The theoretical possibility of 
such an influence was discussed in [9] for the case 7 = 7p = 7 K. For 
given relaxation characteristics rp,  r K, Po/l~ ~,  K0 / K~ and a given 
nonrelaxed Foisson ratio v,r = 0.3,  the volume relaxation peak appears 

f / 

-g o g 

Fig. 5 

most clearly in the case 7 = 1, i . e . ,  when the hereditary properties 
of the shear and bulk moduli are described by a standard linear model. 

Since with decreasing y there occurs a "spreading" of the spec- 
t rum, volume relaxation manifest itself less strongly, until it vanishes 
altogether. This is indicated by the nature of the asymptotic behavior 
of tg r and N. 

In the case of a standard linear body 7~ = 7 K = Y = 1, we have 

t ~ = ~  +,is ~ ~-~ + -~-- 

+ AK [K -~-Ko " 16lx~] AKA~ 2(to~), [ ~ +---7--] 3~o=x~ }' (3.3) 

tg ~Pz : (Ko + 4Is po) -I (aKto'clC q- a]s A~toT~), 

N = Ko + 4/a P,o q- 

+ (K0 + 4Is IXo) -1 {sis AIx (to~'tY" [Ko + ~/a ([Xo q- P~o)l + 

q-- ' /2AK (to'c/f)' (K o "t"/(co -J- l~h P,0) "}- 4 AKA~ / 3r (3.4) 

When 7 decreases, the nature of the asymptotic behavior of the 
loss tangent and dynamic modulus changes, 

t o n i  

1 �9 AK 4 a___.....~._.~ 
t g ~ t = K : o . . }  - ,/alx~ [ ~  q- 3 ( t o~  )x ] s i n ~p ,  

(3.5) 
4P'co [ AK _ 4Ap, ] 

~ = K~~ -'-3---- ~ +  3 (~%)' j C08 

(3.6) 

tg q~l = (K0 + */a I~0)-' [AK (r q- 4/3 A~t (tor~)~l sin q~, 

N = / f 0  + 4/3/x0 q- [AK (r -4- *Is al x (r cos 4 .  

In the analysis of the aymptotic behavior of the coefficient ct l , 
one can observe an impairment  of the temperature-frequency equi-  
valence 

~o>>t 

at = 1/2 to?v, (Kco + 4/3 F~)-% X 

x [AK (torK)-~ q- 3/s al~ (ezt,)-v ] sin ~ , (3.7) 

~ = 'A top'/2 (Ko + "/3 Fo) -v '  X 

• [AK (~0v/r x -]- 4/3 Art (~o.c~)v] sin r . (3. s) 

For r = const, when ~'g ---~0 and rp --* ~r the absorption coefficient 
a l  tends to zero. For r~ = const, when w --*0, r t tends to zero for 
all ? 6 (0A]. However, when w ~ ~, then at---- .o for T ;~ 1 and 
cr l "-* const for y = 1. 

Thus, by using exponential-fractional  functions as kernels of 
elastic integral operators, i t  is possible to study all the characteristics 
of acoustic wave propagation in a viscoelastic medium with a sym- 
metr ical  relaxation spectrum, since to an exponential-fractional  
kernel there corresponds a symmetr ical  distribution function of the 
relaxation frequencies. 
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